Module epiclass.utils.my_logging
Implement logging of specific data through comet logger.
Functions
def log_dset_composition(my_data: DataSet, logdir: str | Path | None, logger: pl_loggers.CometLogger | None, split_nb: int)
-
Logs dataset composition to logger and file.
Either the 'logdir' or 'logger' parameter must be provided, otherwise ValueError is raised.
This function logs - training/validation set size - total number of unique files (training + validation), - training/valid unique md5 composition (to a file)
Args
my_data
:DataSet
- The dataset to log.
- logdir (str | Path | None): The directory where logs will be stored. None if logger is given.
- logger (pl_loggers.CometLogger | None): The logger object to use for logging. None if logdir is given.
split_nb
:int
- The split number to log.
Raises
ValueError if: - both 'logdir' and 'logger' parameters are None - train and validation sets overlap.
def log_pre_training(logger: pl_loggers.CometLogger, to_log: Dict[str, str], step: int | None)
-
Log a bunch of stuff in comet logger. Return experience key (str).
to_log expects keys: - category - hdf5_resolution - loading_time (initial, for hdf5) When step is an int: - split_time (generator yield time)